--- title: "Manually Load pixarfilms Data" description: | Shows how to load pixarfilms data in R and Python. output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Manually Load pixarfilms Data} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ## Overview This vignette here demonstrates how to manually load data without using the {pixarfilms} package if you wish to explore and analyze this data elsewhere. ## Loading within R If for some reason, you don't wish to install the package officially, you can also access the data by reading the data directly from GitHub using {readr}. ```r library(readr) url <- "https://raw.githubusercontent.com/erictleung/pixarfilms/main/data-raw/pixar_films.csv" pixar_films <- read_csv(url) #> Rows: 27 Columns: 5 #> ── Column specification ──────────────────────────────────────────────────────────────────────────── #> Delimiter: "," #> chr (2): film, film_rating #> dbl (2): number, run_time #> date (1): release_date #> #> ℹ Use `spec()` to retrieve the full column specification for this data. #> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message. ``` ```r pixar_films #> # A tibble: 27 × 5 #> number film release_date run_time film_rating #> #> 1 1 Toy Story 1995-11-22 81 G #> 2 2 A Bug's Life 1998-11-25 95 G #> 3 3 Toy Story 2 1999-11-24 92 G #> 4 4 Monsters, Inc. 2001-11-02 92 G #> 5 5 Finding Nemo 2003-05-30 100 G #> 6 6 The Incredibles 2004-11-05 115 PG #> 7 7 Cars 2006-06-09 117 G #> 8 8 Ratatouille 2007-06-29 111 G #> 9 9 WALL-E 2008-06-27 98 G #> 10 10 Up 2009-05-29 96 PG #> # ℹ 17 more rows ``` ## Loading within Python and pandas Similarly, you can read the data directly ```python import pandas as pd #> ModuleNotFoundError: No module named 'pandas' url = "https://raw.githubusercontent.com/erictleung/pixarfilms/main/data-raw/pixar_films.csv" pixar_films = pd.read_csv(url) #> NameError: name 'pd' is not defined ``` ```python pixar_films.head() #> NameError: name 'pixar_films' is not defined ``` ## Data links Here are the URL links you can use using the above methods. ``` https://raw.githubusercontent.com/erictleung/pixarfilms/main/data-raw/academy.csv https://raw.githubusercontent.com/erictleung/pixarfilms/main/data-raw/box_office.csv https://raw.githubusercontent.com/erictleung/pixarfilms/main/data-raw/genres.csv https://raw.githubusercontent.com/erictleung/pixarfilms/main/data-raw/pixar_films.csv https://raw.githubusercontent.com/erictleung/pixarfilms/main/data-raw/pixar_people.csv https://raw.githubusercontent.com/erictleung/pixarfilms/main/data-raw/public_response.csv ```